Ballistic Thermal Transport in Carbyne and Cumulene with Micron-Scale Spectral Acoustic Phonon Mean Free Path
نویسندگان
چکیده
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.
منابع مشابه
Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane.
The "textbook" phonon mean free path of heat carrying phonons in silicon at room temperature is ∼40 nm. However, a large contribution to the thermal conductivity comes from low-frequency phonons with much longer mean free paths. We present a simple experiment demonstrating that room-temperature thermal transport in Si significantly deviates from the diffusion model already at micron distances....
متن کاملBallistic phonon transport in holey silicon.
When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments de...
متن کاملDiameter and Length Effect on Diffusive-ballistic Phonon Transport in a Carbon Nanotube
We report a non-equilibrium molecular dynamics (MD) study on heat conduction of finite-length single-walled carbon nanotubes (SWNTs). The length and diameter dependences of the thermal conductivity are quantified for a range of nanotubelengths up to a micrometer at room temperature using two different temperature control techniques. A thorough investigation was carried out on the influence of i...
متن کاملHigh-field quasiballistic transport in short carbon nanotubes.
Single walled carbon nanotubes with Pd Ohmic contacts and lengths ranging from several microns down to 10 nm are investigated by electron transport experiments and theory. The mean-free path (MFP) for acoustic phonon scattering is estimated to be l(ap) approximately 300 nm, and that for optical phonon scattering is l(op) approximately 15 nm. Transport through very short (approximately 10 nm) na...
متن کاملMolecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon
To better understand thermal transport at nanoscale point contacts such as the tip-sample contact of a scanning probe microscope and at the contact between a nanotube and a planar surface, we have used a nonequilibrium molecular dynamics MD method to calculate the temperature distribution and thermal resistance of a nanometer scale constriction formed between two planar silicon substrates of di...
متن کامل